Zuschriften

Hetero-Diels-Alder Reaction

Equilibrium and Kinetic Deuterium Isotope Effects on the Hetero-Diels-Alder Addition of **Sulfur Dioxide****

Frédéric Monnat, Pierre Vogel,* Rubén Meana, and José A. Sordo*

At room temperature butadiene and alkyl-substituted 1,3dienes that can adopt the s-cis conformation add to sulfur dioxide giving the corresponding sulfones (2,5-dihydrothiophene-1,1-dioxides),[1] which are about 10 kcal mol-1 more stable than the isomeric sultines (3,6-dihydro-1,2-oxathiin-2oxides). [2][3] In the presence of acid catalysts and at temperatures below -40°C the latter equilibrate with the 1,3-dienes, which results in hetero-Diels-Alder additions that are much faster than the corresponding cheletropic additions.^[4] The hetero-Diels-Alder addition of 1,2-dimethylidenecyclohexane (1) to SO₂ does not require promotion by an acid [Eq. (1)]. However, we have demonstrated that the reaction is

+
$$2 \text{ SO}_2$$
 $\xrightarrow{k_2}$ O + O (1)

SO₂ excess CD_2CI_2 2

[*] Prof. Dr. P. Vogel, Dr. F. Monnat Institute of Molecular and Biological Chemistry Swiss Institute of Technology, BCH 1015 Lausanne-Dorigny (Switzerland) Fax: (+41) 21-693-93-75 E-mail: pierre.vogel@epfl.ch. Prof. Dr. J. A. Sordo, R. Meana

Laboratorio de Química Computacional Departamento de Química Física y Analítica Universidad de Oviedo Oviedo, Principado de Asturias (Spain)

Fax: (+34) 98-523-78-50 E-mail: jasg@correo.uniovi.es

[**] This work was supported by the Swiss National Science Foundation, the Centro Svizzero di Calcolo Scientifica (Manno), the SOCRATES (Oviedo/EPFL) program, the Société Vaudoise des Sciences Naturelles (Lausanne), and DGI (BQU2001-3600-C02-01, Madrid, Spain).

Supporting information for this article is available on the WWW under http://www.angewandte.org or from the author.

promoted by SO₂ itself (rate law of second order in [SO₂]).^[5] The unstable sultine **2** resulting from that cycloaddition has been crystallized and analyzed by X-ray diffraction studies at $-100\,^{\circ}\text{C}$.^[6] High-level quantum calculations^[6,7] have suggested that the hetero-Diels–Alder addition of SO₂ to 1,2-dimethylidenecyclohexane is concerted and asynchronous, with the C–S bond formed to a greater extent than the C–O bond in the transition state. We confirm this hypothesis by measuring the kinetic deuterium isotope effect^[8] of the reactions of **1** and its dideuterated derivative **3** with SO₂. Diene **3** equilibrates with the two regioisomeric adducts **4** and **5** (Scheme 1). The experimental kinetic isotope effects are

Scheme 1. The reaction of SO₂ with 3.

compared with those estimated by quantum calculations. We have been able also to measure the deuterium isotope effect on the equilibrium 4 = 5 and have found that it is opposite to the kinetic deuterium isotope effect on the regioselectivity of the addition. This is the first example of Diels-Alder additions for which kinetic and equilibrium isotope effects are compared.

Diene 3 (98 % D_2) was prepared as outlined in Scheme 2, starting with the reduction of *cis*-cyclohexane-1,2-dicarbox-ylic anhydride (7) with one equivalent of NaBD₄ in THF at 0 °C. The resulting lactone 8 was reduced with LiAlH₄ to give diol 9. Esterification with 4-toluenesulfonyl chloride (TsCl) gave 10, which underwent double elimination of toluenesulfonic acid to provide 3 (26 % overall yield based on 7).

Scheme 2. Synthesis of diene **3.** DMAP = dimethylaminopyridine, DMSO = dimethyl sulfoxide, pyr. = pyridine.

The rate laws d[4]/dt = k_4 [3][SO₂]², d[5]/dt = k_5 [3][SO₂]² (formation of regioisomeric sultines 4, 5), and d[6]/dt = k_6 [3] [SO₂]² (formation of sulfolene 6) were followed between -75 and -54 °C and with a 10- to 40-fold excess of SO₂ in CD₂Cl₂. The third-order rate constants k_4 , k_5 , and k_6 are reported in Table 1. One finds a kinetic regioselectivity $k_4/k_5 = 1.11 \pm 0.01$ at -75 °C and 1.0798 \pm 0.0003 at -54 °C. The thermodynamic

Table 1: Third-order rate constants $[M^2 s^{-1}]$ determined by ¹H NMR spectroscopy with toluene as an internal reference.

T [K]	$k_4 \times 10^6$	$k_{\rm S} \times 10^6$	$k_6 \times 10^9$	k_4/k_5
198	2.13 ± 0.15	1.91 ± 0.13	76.9 ± 0.5	1.11 ± 0.001
219.1	$\textbf{4.03} \pm \textbf{0.16}$	$\boldsymbol{3.73\pm0.15}$	338 ± 3	1.0798 ± 0.003

regioselectivity given by [4]/[5] could not be measured at -75 °C because equilibrium was reached too slowly. At -54 °C, however, it amounts to [4]/[5] = 0.73 ± 0.04 (no change in this product ratio after more than 300 h at -54 °C).

We have also measured the relative rate constants for the disappearance of dienes **1** and **3**. The ratio of rate constants $k_2/2\,k_4$ and $k_2/2\,k_5$ give the kinetic deuterium isotope effect for the formation of sultines **4** and **5**, respectively, where k_2 is the rate constant for the appearance of non-deuterated sultine **2**. This was done by following the reactions of a 1:1 mixture of dienes **1** and **3** ([**1**+**3**] < 0.2 M, 2.5–3 M SO₂ in CD₂Cl₂) at $-75\,^{\circ}$ C by 13 C NMR spectroscopy (toluene as internal reference; because of the vicinal deuteration, the chemical shifts of C1 in **1** and **2** are different). The ratio $k_4/k_5 = 1.11 \pm 0.01$ (Table 1) led to $k_2/2\,k_4 = 0.89 \pm 0.04$ (k_H/k_D for the formation of **4**) and $k_2/2\,k_5 = 0.99 \pm 0.05$ (k_H/k_D for the formation of **5**) at $-75\,^{\circ}$ C

Equilibrium deuterium isotope effects have shown that C-D bonds at sp³(C) centers are lower in energy than those at sp²(C) centers .^[9] It was thus expected that the transition structure 11 (in which the C-S bond is formed to a greater extent than the C-O bond) should be more stable than 12 and the corresponding transition structure arising from the nondeuterated dienes. On the contrary, if the C-O bond should be formed first, transition structure 13 is expected to be more stable than 14 and the transition structures of the SO₂ addition to 1 (Scheme 3). Our experimental data $(k_4/k_5 = 1.1, k_2/2 k_4 =$ 0.89, and $k_2/2k_5 = 0.99$ at -75 °C) are consistent only with transition structure 11, as predicted by quantum calculations.^[2] Although the calculations did not locate any intermediates along the reaction hypersurface of the hetero-Diels-Alder addition of butadiene $+2SO_{2}^{[5]}$ we cannot exclude formally that 11 and 12 equilibrate with diradical or zwitterionic intermediates before the formation of sultines 4 and **5**, respectively.

Isotope effects were computed by means of the QUIVER program, $^{[10]}$ which employs the Bigeleisen–Mayer formulation $^{[11]}$ within the transition-state-theory approximation. $^{[12]}$ Scaling factors of 0.943 [MP2/6-31G(d)] and 0.9614 [B3LYP6-31G(d)] were used in the calculations. $^{[13]}$ The kinetic deuterium isotope effects calculated are reported in Table 2 for the hetero-Diels–Alder addition of $1/3 + 2\,\mathrm{SO}_2$ and of butadiene (15)/1,1-dideuterobutadiene (16) $+ 2\,\mathrm{SO}_2$ following concerted mechanisms.

Zuschriften

Scheme 3. Transition structures leading to products 4 and 5.

Calculations predict smaller $k_{\rm H}/k_{\rm D}$ values than those found experimentally, but the calculated kinetic regioselectivities k_4/k_5 are similar to the experimental values. This confirms that the C–S bond is formed to a greater extent than the C–O bond in the transition state of the hetero-Diels–Alder additions of sulfur dioxide (see Figure 1). Calculations made for the butadiene + SO $_2$ reaction predict the C–O bond to be formed to a greater extent in the transition state of the concerted mechanism. For the reaction involving a diradical intermediate 'OSOCH $_2$ CH=CH $_2$ CH $_2$ ' calculations lead to k_4/k_5 values much smaller than those observed (Table 3). Furthermore, the "energy of concert" [14] (the difference between the activation energies of the concerted and diradical transition states) is ca. 13 kcal mol $^{-1}$ in favor of the concerted mechanism.

The theoretical prediction for the thermodynamic regioselectivity at the B3LYP6-31G(d) level of theory (0.758 and 0.718 for equilibria involving one and two molecules of SO₂,

Table 2: Calculated kinetic deuterium isotope effects for concerted hetero-Diels-Alder additions.

Reaction	Ratio		<i>T</i> [°C]	<u> </u>
		-75	-54	+25
$1/3 + 2SO_2 \rightarrow [11] \rightarrow 4 + SO_2$	$k_{\rm H}/k_{\rm D}^{\rm [a]}$	0.692	0.725	0.816 ^[b]
	(0.714)	(0.746)	(0.830) ^[c]	
$1/3 + 2SO_2 \rightarrow [12] \rightarrow 5 + SO_2 k'_H/k'_D$ ^[d]	0.776	0.801	0.869 ^[b]	
	(0.734)	(0.763)	(0.841) ^[c]	
Kinetic regioselectivity ^[i] :		1.12	1.10	1.06
$15/16 + 2SO_2 \rightarrow [11'] \rightarrow 4' + SO_2$	$k_{\rm H}/k_{\rm D}^{\rm [e]}$	0.707	0.741	0.829 ^[b,j]
	(0.673)	(0.709)	(0.806) ^[c]	
	0.658	0.695	0.796 ^[f]	
	(0.755)	(0.785)	(0.865) ^[g]	
$15/16 + 2SO_2 \rightarrow [12'] \rightarrow 5' + SO_2$	$k'_{\rm H}/k'_{\rm D}^{\rm [h]}$	0.693	0.729	$0.824^{[b]}$
	(0.721)	(0.754)	$(0.842)^{[c,k]}$	
	0.748	0.780	0.861 ^[f]	
	(0.647)	(0.685)	(0.789 ^[g]	

[a] $k_{\rm H}/k_{\rm D} = k_{\rm I}/2\,k_{\rm 4}$. [b] B3LYP6-31G(d). [c] B3LYP6-31G(d) for the reaction with only one equivalent of SO₂. [d] $k_{\rm H}/k_{\rm D} = k_{\rm I}/2\,k_{\rm 5}$. [e] $k_{\rm H}/k_{\rm D} = b$ utadiene + 2SO₂ vs. 1,1-D₂-butadiene + 2SO₂ giving a sultine analogous to 4. [f] MP2/6-31G(d). [g] MP2/6-31G(d) for reaction with only one equivalent of SO₂. [h] $k_{\rm H}/k_{\rm D} = b$ utadiene + 2SO₂ vs. 1,1-D₂-butadiene + 2SO₂ giving sultine analogous to 5. [i] $k_{\rm H}/k_{\rm D}(5)/k_{\rm H}/k_{\rm D}(4)$ and $k_{\rm H}/k_{\rm D}(5)/k_{\rm H}/k_{\rm D}(4)$; calculated (B3LYP6-31G(d) including zero-point energy). [j] Energy barrier: 4.8 kcal mol⁻¹. [k] Energy barrier: 12.2 kcal mol⁻¹.

Table 3: Calculated kinetic deuterium isotope effects for nonconcerted hetero-Diels–Alder addition of SO_2 + butadiene \rightarrow ['OSOCH₂CHCH-CH₂]^[a].

Reaction	Ratio	<i>T</i> [°C]		
		-75	-54	+25
15, 16 + SO ₂ →4′	$k_{\rm H}/k_{\rm D}^{\rm [b]}$	1.086	1.075	1.046 ^[c]
15 , 16 + $SO_2 \rightarrow 5'$	$k'_{\rm H}/k'_{\rm DD}^{\rm [d]}$	0.568	0.610	$0.727^{[c]}$
Kinetic regioselectivity ^[e] :		0.52	0.56	0.69

[a] Calculated (B3LYP6-31G(d)) energy barrier: 25.3 kcal mol⁻¹, relative stability of the diradical intermediate: 18.5 kcal mol⁻¹, second energy barrier: 19.1 kcal mol⁻¹. [b] $k_{\rm H}/k_{\rm D} = k(15 + {\rm SO}_2)/k(16 + {\rm SO}_2 \rightarrow 4')$. [c] B3LYP6-31G(d). [d] $k'_{\rm H}/k'_{\rm DD} = k(15 + {\rm SO}_2)/k(16 + {\rm SO}_2 \rightarrow 5')$. [e] Ratio $(k'_{\rm H}/k'_{\rm DD})/(k_{\rm H}/k_{\rm D})$.

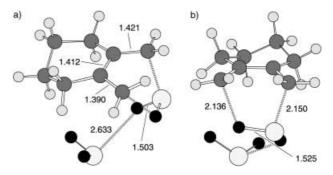


Figure 1. Calculated transition structure for the hetero-Diels-Alder addition $1+2\,SO_2$. a) Top view, b) side view. Large pale balls = sulfur, small black balls = oxygen, medium gray balls = carbon, small pale balls = hydrogen. Distances in Å.

respectively) agrees rather well with the experimental measurements (0.73 \pm 0.04).

The equilibrium deuterium isotope effect that renders 5 more stable than 4 can be interpreted in terms of the preference for dueterium to substitute at C-H moieties with

the highest stretching vibration energy. In sultines **4** and **5** the acidifying effect of the S=O moiety makes the C4–H bond weaker than the C1–H bond. Thus deuterium prefers C1, rendering **5** more stable than **4**.The kinetic isotope effects are not dominated by the thermodynamic isotope effects (Dimroth principle: $\Delta H^{\dagger} = \alpha \Delta H + \beta$), thus reinforcing the validity of the experimental test used here to define the asynchronous character of the concerted hetero-Diels–Alder additions of SO₂. [14]

Received: April 23, 2003 [Z51732]

Keywords: ab initio calculations · cycloaddition · heterocycles · isotope effects · sulfur dioxide

G. de Bruin, Proc. K. Ned. Akad. Wet. 1914, 17, 585; H. J. Backer, J. Strating, Recl. Trav. Chim. Pays-Bas 1943, 62, 815.

^[2] B. Deguin, P. Vogel, J. Am. Chem. Soc. 1992, 114, 9210; T. Fernández, D. Suárez, J. A. Sordo, F. Monnat, E. Roversi, A. Estrella de Castro, K. Schenk, P. Vogel, J. Org. Chem. 1998, 63, 9490; F. Monnat, P. Vogel, J. A. Sordo, Helv. Chim. Acta 2002, 85, 712.

^[3] For early examples of hetero-Diels-Alder additions of SO₂, see: R. F. Heldeweg, H. Hogeveen, J. Am. Chem. Soc. 1976, 98, 2341; T. Durst, L. Tréteault-Ryan, Tetrahedron Lett. 1978,

- 2353; see also: J.-H. Liu, A.-T. Wu, M.-H. Huang, C.-W. Wu, W.-S. Chong, *J. Org. Chem.* **2000**, *65*, 3395.
- [4] E. Roversi, F. Monnat, P. Vogel, K. Schenk, P. Roversi, Helv. Chim. Acta 2002, 85, 733; E. Roversi, R. Scoppelliti, E. Solari, R. Estoppey, P. Vogel, P. Braña, B. Menéndez, J. A. Sordo, Chem. Eur. J. 2002, 8, 1336.
- [5] T. Fernández, J. A. Sordo, F. Monnat, B. Deguin, P. Vogel, J. Am. Chem. Soc. 1998, 120, 13276.
- [6] D. Markovic, E. Roversi, R. Scoppelliti, P. Vogel, R. Meana, J. A. Sordo, *Chem. Eur. J.*, 2003, in press..
- [7] D. Suárez, T. L. Sordo, J. A. Sordo, J. Am. Chem. Soc. 1994, 116,
 763; D. Suárez, T. L. Sordo, J. A. Sordo, J. Org. Chem. 1995, 60,
 2848.
- [8] For examples of kinetic deuterium isotope effects used to establish the synchronicity or asynchronicity of concerted Diels—Alder reactions: M. Taagepera, E. R. Thornton, J. Am. Chem. Soc. 1972, 94, 1168; J. J. Gajewski, K. B. Petersen, J. R. Kagel, Y. C. J. Huang, J. Am. Chem. Soc. 1989, 111, 9078; D. A. Singleton, S. R. Merrigan, B. R. Beno, K. N. Houk, Tetrahedron Lett. 1999, 40, 5817; D. A. Singleton, S. R. Merrigan, A. A. Thomas, Tetrahedron Lett. 1999, 40, 639; K. N. Houk, J. González, Y. Li, Acc. Chem. Res. 1995, 28, 81; N. Chronakis, M. Orfanopoulos, Org. Lett. 2001, 3, 545.
- [9] J. J. Gajewski, N. D. Conrad, J. Am. Chem. Soc. 1979, 101, 6693.
- [10] W. Saunders, K. E. Laidig, M. Wolfsberg, J. Am. Chem. Soc. 1989, 111, 8989.
- [11] J. Bigeleisen, M. G. Mayer, J. Chem. Phys. 1947, 15, 261.
- [12] K. J. Laidler, *Chemical Kinetics*, 3rd ed., Harper & Row, New York, **1987**.
- [13] A. P. Scott, L. Radom, J. Phys. Chem. 1996, 100, 16502.
- [14] For other studies on the hetero-Diels-Alder addition mechanisms, see e.g.: L. Kupczyk-Subotkowska, H. J. Shine, J. Am. Chem. Soc. 1993, 115, 5296; G. Orlova, J. D. Goddard, J. Org. Chem. 2001, 66, 4026; A. G. Leach, K. N. Houk, J. Org. Chem. 2001, 66, 5192; A. G. Leach, K. N. Houk, Chem. Commun. 2002, 1243.